If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-27x+825=0
a = -3; b = -27; c = +825;
Δ = b2-4ac
Δ = -272-4·(-3)·825
Δ = 10629
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10629}=\sqrt{9*1181}=\sqrt{9}*\sqrt{1181}=3\sqrt{1181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{1181}}{2*-3}=\frac{27-3\sqrt{1181}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{1181}}{2*-3}=\frac{27+3\sqrt{1181}}{-6} $
| 6y^2+9y+6=0 | | 3y+1/2=5/2 | | 3x/2+4x/2=1 | | 25/x+25/x=1 | | 3y+5=25+6y | | 4x8x3=32x | | X1=1x8 | | 9(2z-7)=11(z+14) | | (x-2)(x-9)=18 | | 291=0t+0.5*9.8*t^2 | | (5x-3)(4x+1)=0 | | 13y+3=19-8y | | +x36=90 | | 9(x-8)=54= | | x^2-56x+160=0 | | x^2+56x+160=0 | | x^2-56x-160=0 | | x^2+56x-160=0 | | 2*3.1415928*r=15 | | 31-x=-8 | | 8x=9x+21 | | 2x-x/2=21 | | 0.04=1/x | | 4x+3=37.5 | | 2^(x^2-5x)=(1)/(64) | | 3x^2+4x-5=5x^2+2x+1 | | 63x=8/3 | | 16y+14y=1044 | | -8.18x^2=0 | | 4p+8=72 | | 5h-2(3.4h+)=10 | | 5h-2(3/4h+)=10 |